111 lines
4.6 KiB
Fortran
111 lines
4.6 KiB
Fortran
|
SUBROUTINE XAJ(FILELEN ,&
|
|||
|
NODE ,& ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
M ,& ! <20><><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>λ<EFBFBD><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
PAR ,& ! //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
NAREA ,& ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
AREA ,& ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
UH ,& ! <20><><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>λ<EFBFBD><CEBB> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
DT ,& ! ʱ<>β<EFBFBD><CEB2><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
P ,& ! <20><><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
EP ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
W ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE> 1.<2E>ϲ<EFBFBD> 2.<2E>²<EFBFBD> 3.<2E><><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
FR ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
S ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
QRSS0 ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
QRG0 ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
Q20 ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼֵ <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD>
|
|||
|
X ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
K ,& ! <20><><EFBFBD><EFBFBD>ģ<EFBFBD><C4A3> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
DETAT ,& ! ʱ<>䲽<EFBFBD><E4B2BD> <20><>Сʱ<D0A1><CAB1> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
C0 ,& ! ϵ<><CFB5> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
C1 ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
C2 ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
QOUT ) ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD>
|
|||
|
|
|||
|
IMPLICIT NONE
|
|||
|
|
|||
|
INTEGER::NODE
|
|||
|
|
|||
|
|
|||
|
REAL::X
|
|||
|
REAL::K
|
|||
|
REAL::DETAT
|
|||
|
|
|||
|
REAL::C0
|
|||
|
REAL::C1
|
|||
|
REAL::C2
|
|||
|
|
|||
|
INTEGER:: FILELEN
|
|||
|
INTEGER::M !
|
|||
|
REAL::PAR(13) ! 1.<2E>ϲ<EFBFBD><CFB2><EFBFBD><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>wum 2.<2E>²<EFBFBD><C2B2><EFBFBD><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>wl 3.<2E><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>wdm
|
|||
|
! 4.<2E><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>KC.<2E><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>c 6.<2E><><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>b
|
|||
|
! 7.<2E><>ˮ<CDB8><CBAE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>imp1 8.<2E><><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>sm 9.<2E><><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>ex
|
|||
|
!10.<2E><><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>kg 11.<2E><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>kss 12.<2E><><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>kkg
|
|||
|
!13.<2E><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>kkss
|
|||
|
integer::NAREA ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
REAL::AREA(NAREA) ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD>
|
|||
|
REAL::Q1(NAREA,NODE)
|
|||
|
REAL::UH(M) ! <20><><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>λ<EFBFBD><CEBB>
|
|||
|
REAL::DT ! ʱ<>β<EFBFBD><CEB2><EFBFBD>
|
|||
|
REAL::P(NAREA,NODE) ! <20><><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5>
|
|||
|
REAL::EP(NAREA,NODE) ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
REAL::QR(NAREA,NODE) ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD>
|
|||
|
REAL::W(3) ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE> 1.<2E>ϲ<EFBFBD> 2.<2E>²<EFBFBD> 3.<2E><><EFBFBD><EFBFBD>
|
|||
|
REAL::FR ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
REAL::S ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE>
|
|||
|
REAL::QRSS0 ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
REAL::QRG0 ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
REAL::Q2(NAREA,NODE)
|
|||
|
INTEGER::I,J
|
|||
|
REAL::QOUT(NODE)
|
|||
|
REAL::Q20(NAREA)
|
|||
|
|
|||
|
DO I = 1,NODE
|
|||
|
QOUT(I) = 0.0
|
|||
|
END DO
|
|||
|
|
|||
|
DO I =1,NAREA
|
|||
|
|
|||
|
CALL XAJMX( FILELEN ,&
|
|||
|
NODE ,& ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
M ,& ! <20><><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>λ<EFBFBD><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
PAR ,& ! //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
AREA(I) ,& ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
UH ,& ! <20><><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>λ<EFBFBD><CEBB> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
DT ,& ! ʱ<>β<EFBFBD><CEB2><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
P(I,:) ,& ! <20><><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
EP(I,:) ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
W ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE> 1.<2E>ϲ<EFBFBD> 2.<2E>²<EFBFBD> 3.<2E><><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
FR ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
S ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
QRSS0 ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
QRG0 ,& ! <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ˮ<EFBFBD><CBAE><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
QR(I,:) ) ! <20><>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
|||
|
DO J = 1,NAREA
|
|||
|
|
|||
|
Q1(J,:)=QR(J,:)
|
|||
|
|
|||
|
END DO
|
|||
|
|
|||
|
CALL Mc_method( FILELEN ,& ! <20>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD>ֳ<EFBFBD><D6B3><EFBFBD> <20><><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
NODE ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݵ<EFBFBD><DDB5><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
Q1(I,:) ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
Q20(I) ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼֵ <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD>
|
|||
|
X ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
K ,& ! <20><><EFBFBD><EFBFBD>ģ<EFBFBD><C4A3> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
DETAT ,& ! ʱ<>䲽<EFBFBD><E4B2BD> <20><>Сʱ<D0A1><CAB1> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
C0 ,& ! ϵ<><CFB5> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
C1 ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
C2 ,& ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
Q2(I,:) ) ! <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD><EFBFBD>
|
|||
|
|
|||
|
END DO
|
|||
|
|
|||
|
DO I = 1,NAREA
|
|||
|
DO J = 1,NODE
|
|||
|
QOUT(J)= Q2(I,J) + QOUT(J)
|
|||
|
END DO
|
|||
|
END DO
|
|||
|
|
|||
|
END SUBROUTINE XAJ
|