上传文件至 /

This commit is contained in:
ljy 2025-06-13 10:38:45 +08:00
commit 207553457f
2 changed files with 243 additions and 0 deletions

98
1.py Normal file
View File

@ -0,0 +1,98 @@
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from algorithms import detect_outliers_3sigma, detect_outliers_iqr, detect_outliers_grubbs, detect_outliers_gesd
class OutlierDetector:
def __init__(self):
self.data = None
self.results = None
self.current_method = None
def load_data(self, file_path):
"""加载时间序列数据"""
try:
self.data = pd.read_csv(file_path, parse_dates=['timestamp'])
self.data.set_index('timestamp', inplace=True)
return True, "数据加载成功"
except Exception as e:
return False, f"数据加载失败: {str(e)}"
def detect_outliers(self, method, column, **kwargs):
"""使用指定方法检测离群点"""
if self.data is None:
return False, "请先加载数据"
if column not in self.data.columns:
return False, f"'{column}'不存在"
series = self.data[column].dropna()
if len(series) == 0:
return False, "所选列没有有效数据"
self.current_method = method
try:
if method == '3sigma':
results = detect_outliers_3sigma(series, **kwargs)
elif method == 'iqr':
results = detect_outliers_iqr(series, **kwargs)
elif method == 'grubbs':
results = detect_outliers_grubbs(series, **kwargs)
elif method == 'gesd':
results = detect_outliers_gesd(series, **kwargs)
else:
return False, "不支持的检测方法"
self.results = results
return True, "离群点检测成功"
except Exception as e:
return False, f"离群点检测失败: {str(e)}"
def get_detection_results(self):
"""获取检测结果"""
if self.results is None:
return None
return {
'method': self.current_method,
'series_name': self.results['series_name'],
'upper_bound': self.results['upper_bound'],
'lower_bound': self.results['lower_bound'],
'mean': self.results['mean'],
'outliers': self.results['outliers'],
'outlier_indices': self.results['outlier_indices']
}
def plot_results(self):
"""绘制检测结果"""
if self.results is None:
return False, "没有可用的检测结果"
plt.figure(figsize=(12, 6))
# 绘制原始数据
plt.plot(self.results['series'], 'b-', label='原始数据')
# 绘制均值线
plt.axhline(self.results['mean'], color='g', linestyle='--', label='均值')
# 绘制边界线
plt.axhline(self.results['upper_bound'], color='r', linestyle='--', label='上边界')
if 'lower_bound' in self.results:
plt.axhline(self.results['lower_bound'], color='r', linestyle='--', label='下边界')
# 标记离群点
outlier_dates = self.results['series'].index[self.results['outlier_indices']]
outlier_values = self.results['series'].iloc[self.results['outlier_indices']]
plt.plot(outlier_dates, outlier_values, 'ro', markersize=8, label='离群点')
plt.title(f"离群点检测 - {self.current_method.upper()}方法")
plt.xlabel('时间')
plt.ylabel('数值')
plt.legend()
plt.grid(True)
plt.tight_layout()
return True, plt

145
2.py Normal file
View File

@ -0,0 +1,145 @@
import numpy as np
from scipy import stats
from collections import defaultdict
def detect_outliers_3sigma(series, threshold=3):
"""3倍标准差法检测离群点"""
mean = np.mean(series)
std = np.std(series)
upper_bound = mean + threshold * std
lower_bound = mean - threshold * std
outliers = (series > upper_bound) | (series < lower_bound)
outlier_indices = np.where(outliers)[0]
return {
'series': series,
'series_name': series.name if series.name else '序列',
'mean': mean,
'std': std,
'upper_bound': upper_bound,
'lower_bound': lower_bound,
'outliers': series[outliers],
'outlier_indices': outlier_indices,
'threshold': threshold
}
def detect_outliers_iqr(series, k=1.5):
"""四分位数法检测离群点"""
q1 = series.quantile(0.25)
q3 = series.quantile(0.75)
iqr = q3 - q1
upper_bound = q3 + k * iqr
lower_bound = q1 - k * iqr
outliers = (series > upper_bound) | (series < lower_bound)
outlier_indices = np.where(outliers)[0]
return {
'series': series,
'series_name': series.name if series.name else '序列',
'q1': q1,
'q3': q3,
'iqr': iqr,
'upper_bound': upper_bound,
'lower_bound': lower_bound,
'outliers': series[outliers],
'outlier_indices': outlier_indices,
'k': k
}
def detect_outliers_grubbs(series, alpha=0.05):
"""Grubbs法检测离群点"""
values = series.values
n = len(values)
outlier_indices = []
while True:
if n <= 2:
break
mean = np.mean(values)
std = np.std(values)
abs_dev = np.abs(values - mean)
max_idx = np.argmax(abs_dev)
g = abs_dev[max_idx] / std
t = stats.t.ppf(1 - alpha / (2 * n), n - 2)
critical = (n - 1) / np.sqrt(n) * np.sqrt(t**2 / (n - 2 + t**2))
if g > critical:
outlier_indices.append(series.index.get_loc(series.index[max_idx]))
values = np.delete(values, max_idx)
n -= 1
else:
break
upper_bound = mean + critical * std
lower_bound = mean - critical * std
return {
'series': series,
'series_name': series.name if series.name else '序列',
'mean': mean,
'std': std,
'upper_bound': upper_bound,
'lower_bound': lower_bound,
'outliers': series[outlier_indices],
'outlier_indices': outlier_indices,
'alpha': alpha
}
def detect_outliers_gesd(series, alpha=0.05, max_outliers=None):
"""GESD (广义极端学生化偏差) 方法检测离群点"""
values = series.copy()
n = len(values)
if max_outliers is None:
max_outliers = n // 10 # 默认最多检测10%的数据点为离群点
outlier_indices = []
r_values = []
lambda_values = []
for i in range(1, max_outliers + 1):
mean = np.mean(values)
std = np.std(values)
abs_dev = np.abs(values - mean)
max_idx = np.argmax(abs_dev)
r = abs_dev[max_idx] / std
r_values.append(r)
p = 1 - alpha / (2 * (n - i + 1))
t = stats.t.ppf(p, n - i - 1)
lambda_val = (n - i) * t / np.sqrt((n - i - 1 + t**2) * (n - i + 1))
lambda_values.append(lambda_val)
if r > lambda_val:
original_idx = series.index.get_loc(values.index[max_idx])
outlier_indices.append(original_idx)
values = values.drop(values.index[max_idx])
else:
break
if len(outlier_indices) > 0:
upper_bound = series.iloc[outlier_indices].max() + 0.1 * series.std()
lower_bound = series.iloc[outlier_indices].min() - 0.1 * series.std()
else:
upper_bound = series.mean() + 3 * series.std()
lower_bound = series.mean() - 3 * series.std()
return {
'series': series,
'series_name': series.name if series.name else '序列',
'mean': np.mean(series),
'std': np.std(series),
'upper_bound': upper_bound,
'lower_bound': lower_bound,
'outliers': series[outlier_indices],
'outlier_indices': outlier_indices,
'alpha': alpha,
'max_outliers': max_outliers,
'r_values': r_values,
'lambda_values': lambda_values
}